Brivaracetam Differentially Affects Voltage-Gated Sodium Currents Without Impairing Sustained Repetitive Firing in Neurons
نویسندگان
چکیده
AIMS Brivaracetam (BRV) is an antiepileptic drug in Phase III clinical development. BRV binds to synaptic vesicle 2A (SV2A) protein and is also suggested to inhibit voltage-gated sodium channels (VGSCs). To evaluate whether the effect of BRV on VGSCs represents a relevant mechanism participating in its antiepileptic properties, we explored the pharmacology of BRV on VGSCs in different cell systems and tested its efficacy at reducing the sustained repetitive firing (SRF). METHODS Brivaracetam investigations on the voltage-gated sodium current (I(Na)) were performed in N1E-155 neuroblastoma cells, cultured rat cortical neurons, and adult mouse CA1 neurons. SRF was measured in cultured cortical neurons and in CA1 neurons. All BRV (100-300 μM) experiments were performed in comparison with 100 μM carbamazepine (CBZ). RESULTS Brivaracetam and CBZ reduced IN a in N1E-115 cells (30% and 40%, respectively) and primary cortical neurons (21% and 47%, respectively) by modulating the fast-inactivated state of VGSCs. BRV, in contrast to CBZ, did not affect I(Na) in CA1 neurons and SRF in cortical and CA1 neurons. CBZ consistently inhibited neuronal SRF by 75-93%. CONCLUSIONS The lack of effect of BRV on SRF in neurons suggests that the reported inhibition of BRV on VGSC currents does not contribute to its antiepileptic properties.
منابع مشابه
The investigational anticonvulsant lacosamide selectively enhances slow inactivation of voltage-gated sodium channels.
We hypothesized that lacosamide modulates voltage-gated sodium channels (VGSCs) at clinical concentrations (32-100 muM). Lacosamide reduced spiking evoked in cultured rat cortical neurons by 30-s depolarizing ramps but not by 1-s ramps. Carbamazepine and phenytoin reduced spike-firing induced by both ramps. Lacosamide inhibited sustained repetitive firing during a 10-s burst but not within the ...
متن کاملAction potential changes associated with impairment of functional properties of sodium channels in hippocampal neurons induced by melamine.
Since the melamine-contamination event happened in September 2008, there have been lots of studies about melamine toxicity, but very limited studies focused on central nervous system (CNS). In the present study, we investigated the effects of melamine (5x10(-4), 5x10(-5) and 5x10(-6)g/ml) on voltage-gated sodium channels (VGSCs) in hippocampal CA1 neurons using whole-cell patch-clamp recordings...
متن کاملElectrophysiological characterization of Grueneberg ganglion olfactory neurons: spontaneous firing, sodium conductance, and hyperpolarization-activated currents.
Mammals rely on their acute olfactory sense for their survival. The most anterior olfactory subsystem in the nose, the Grueneberg ganglion (GG), plays a role in detecting alarm pheromone, cold, and urinary compounds. GG neurons respond homogeneously to these stimuli with increases in intracellular [Ca(2+)] or transcription of immediate-early genes. In this electrophysiological study, we used pa...
متن کاملZinc and copper influence excitability of rat olfactory bulb neurons by multiple mechanisms.
Zinc and copper are highly concentrated in several mammalian brain regions, including the olfactory bulb and hippocampus. Whole cell electrophysiological recordings were made from rat olfactory bulb neurons in primary culture to compare the effects of zinc and copper on synaptic transmission and voltage-gated ion channels. Application of either zinc or copper eliminated GABA-mediated spontaneou...
متن کاملLoss of Navβ4-Mediated Regulation of Sodium Currents in Adult Purkinje Neurons Disrupts Firing and Impairs Motor Coordination and Balance.
The resurgent component of voltage-gated Na+ (Nav) currents, INaR, has been suggested to provide the depolarizing drive for high-frequency firing and to be generated by voltage-dependent Nav channel block (at depolarized potentials) and unblock (at hyperpolarized potentials) by the accessory Navβ4 subunit. To test these hypotheses, we examined the effects of the targeted deletion of Scn4b (Navβ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 21 شماره
صفحات -
تاریخ انتشار 2015